
The RISC-V way to Confidential Computing
Nick Kossifidis

Senior System Software Engineer @ FORTH
Chair of RISC-V Runtime Integrity SIG

2

Quick intro to confidential computing

3

• An execution context that provides confidentiality & integrity guarantees.
• Outsiders can’t access data or code at runtime.
• Outsiders can’t interfere with its control flow at runtime.
• Outsiders

• any other untrusted entity (e.g. other processes, devices, the OS,
other systems).

• any other trusted entities that don’t belong in the same security /
trust domain.

• Security domain
• a set of resources managed with a common security policy (e.g. a

form of authentication).

Trusted Execution Environment

4

• But not availability !
• A TEE may be instantiated through an untrusted

environment, e.g. an OS that needs to allocate
resources for the TEE, load a binary inside etc.

Trusted Execution Environment

5

• The set of mechanisms (hardware and software) required for
enforcing security policies (including TEE guarantees).

• TCB usually includes
• The CPU

• Bootrom
• Firmware
• Secure monitor

• Other devices
• Firmware

• Complex OSes, Hypervisors, etc can’t be part of TCB since
they are very hard to audit and protect.

Trusted Computing Base

6

• CPU
• HW Root-of-Trust (RoT)

• Bootrom
• Signed measurement of itself

• Firmware
• Measurement signed by Bootrom

• Secure Monitor
• Measurement signed by firmware

Trusting the TCB (an example)

7

• A standard way for creating a trust chain
• Each part of the chain (aka Compound Device Identifier)

depends on the previous one, and the first one depends
on the Unique Device Secret (UDS).
• CDI0 = KDF(UDSlen, UDS || Hash(Measurement(TCB0)))
• CDIn = KDF(CDIlen, CDIn-1 || Hash(Measurement(TCBn)))

• Each CDI never leaves the TCB

Device Identifier Composition Engine

https://trustedcomputinggroup.org/work-groups/dice-architectures/

8

• Each TCB layer creates an attestation keypair
• (UDSpriv, UDSpub) = AsymKDF(UDS)
• (CDIpriv_n, CDIpub_n) = AsymKDF(CDIn)

• For each TCB layer we get a TCB id from its public key
• UDS_ID = KDF(IDlen, UDSpub)
• CDIn_ID = KDF(IDlen, CDIpub_n)

• We use those to create Entity Attestation Tokens (EAT)
• https://datatracker.ietf.org/doc/draft-ietf-rats-eat/22/

Attestation evidence

https://datatracker.ietf.org/doc/draft-ietf-rats-eat/22/

9

Remote attestation framework

IETF RATS (RFC9334)

10

Quick overview of RISC-V Privilege modes

11

RISC-V Privilege modes

● Mandatory
● The most privileged /

protected mode visible to the
software (there is also Debug
mode but it’s only accessible /
visible to hw debuggers)

● Physical memory addressing
● Physical memory protection
● Trap/Interrupt handling and

delegation

● Optional (depends on
M-mode)

● The least privileged /
protected mode

● Physical/virtual memory
addressing Physical/virtual
memory protection

● No trap/interrupt handling

● Optional (depends on M-mode
and U-mode)

● Sits between M-mode and
U-mode

● Provides virtual memory
addressing / protection

● Trap/interrupt handling through
delegation, managed by M-mode

● May act as a hypervisor (aka
HS-mode) through the use of an
extra set of CSRs, also providing
a second stage of translation /
protection for guests (aka
VS-mode instances)

Machine Mode User Mode Supervisor Mode

The RISC-V Privileged Spec
https://github.com/riscv/riscv-isa-manual/releases

https://github.com/riscv/riscv-isa-manual/releases

12

Trap and interrupt delegation

13

RISC-V CoVe (Confidential VM Extension)

14

Trusted VMs

https://github.com/riscv-non-isa/riscv-ap-tee

15

Application workloads

16

Chain of trust

17

Cove-IO

Still early draft

Focuses on PCI-E devices

https://github.com/riscv-non-isa/riscv-ap-tee-io

18

Under the hood

(Part 1: CPU-level Memory isolation)

19

Physical Memory Protection (PMP)

• Basic isolation between M-mode and S/U-modes.
• Normal rules apply to S/U, Locked rules (impossible

to edit after adding them) apply to all modes. PMP
gives access to S/U (locked down by default) and
restricts M (full access by default).

• Up to 64 entries for defining physical memory
regions and their permissions.

• Support for three different addressing modes (TOR,
NA4, NAPOT).

• Priority matching from lower to higher indexed
entries.

RISC-V Privilege Spec

20

Enhanced Physical Memory Protection (ePMP)

• Locked rules that apply only to M mode.
• Access/execution prevention from

M-mode to S/U-mode.
• Ability to switch policy from blacklist to

whitelist for M-mode.
• Ability to prevent adding new executable

regions on M-mode.
• Shared regions with reduced privileges

between M-mode and S/U-modes.
• Allow for greater flexibility to support

more use cases.
• Frozen / almost ready for public review.

https://github.com/riscv/riscv-tee/blob/main/Smepmp/Smepmp.pdf

21

Supervisor PMP (sPMP)

• May be used instead of the MMU on
S/HS/VS-modes.

• Similar encodings to ePMP.
• Fast switching between sets of rules.
• Useful for:

• Supporting small trusted hypervisors
on HS-mode (VS to VS and HS to VS
isolation)

• TEEs on S/U/VS-mode
• Small IoT devices without MMU

• Under development, goal is to freeze by the
end of 2023.

https://github.com/riscv/riscv-spmp/blob/main/rv-spmp-spec.pdf

22

Virtual memory

• Isolation between S and U mode and
between tasks on U mode.

• Also used for isolation between guests (VS -
VS), and between the guests and the host
(HS - VS), using a 2nd translation stage.

• SMEP is always in place, there is no way for
S mode to execute pages marked with the U
bit.

• SMAP is on by default but can be disabled
temporarily (through sstatus.SUM) so that
S-mode can read/write data from U-mode on
specific code paths (e.g. copy_to/from_user()
on Linux).

RISC-V Privilege Spec

23

Pointer Masking

actual_address = (requested_address & ~mpmmask) | mpmbase

• Bits on the mask are ignored by the hardware and replaced by the contents of
mpmbase. Works for both physical and virtual addresses.

• Can be used for software-based memory tagging, by using the masked bits of the
address for tags and checking them on software.

• Can also be used as a simple memory protection mechanism, by allowing code to
restrict its allowed memory range (e.g. restrict a library to only access code / data
within an address range, without being able to access the rest of the task’s memory).

• Each privilege mode has own copy of pointer masking CSR register. It appears as the
mpmmask, spmmask, vspmmask and upmmask registers in the M-mode, HS/S-mode,
VS-mode and (V)U-mode ISAs, respectively.

• Each privilege mode has its own copy of pointer base CSR register. It appears as the
mpmbase, spmbase, vspmbase and upmbase registers in the M-mode, HS/S-mode,
VS-mode and (V)U-mode ISAs, respectively.

• A simpler version is going for ratification.

https://github.com/riscv/riscv-j-extension/blob/master/pointer-masking-proposal.adoc

24

Supervisor Domains

• A more flexible/extensible approach to Physical Memory Protection
• System is split in Supervisor Domains, managed by trusted M-mode software (Root

Domain Security Manager - RDSM)
• Each domain is associated with a series of physical memory regions, through a table

called Memory Tracking Table (MTT), held in memory.
• RDSM switches between Supervisor Domains by re-setting mtt pointer register (mttp)
• Better suited for systems with complex VMs/TEEs on S/VS-mode
• Required for confidential computing

https://github.com/riscv/riscv-smmtt

25

Work in progress…

• Hardware Fault Injection (HFI)
• https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf

• Memory Tagging
• 3 proposals (Alibaba, Google, Nvidia) at this point
• Works on top of pointer masking (even the reduced version -TBI)

• Capability-based protections (CHERI/Capstone)
• There is another SIG for that…

• M-mode isolation / lightweight TEE
• Most of us prefer to just privilege things on S-mode
• But there are some use cases where we need isolation on M-mode

https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf

26

Under the hood

(Part 2: Platform-level Memory isolation)

27

I/O PMP Overview

https://github.com/riscv-non-isa/iopmp-spec

• Provides per-device memory protection
based on incoming Source ID.

• Assignment of Source IDs are out of scope.
• Number of Source IDs supported is

implementation-defined.
• Still work in progress
• We try to make it compatible with

WorldGuard

28

Multi-domain I/O Controller

Domain 1 Domain 2 Domain 3 Domain n

IO Controller

RPI1 RPI2 RPI3 RPIn

D1
Config
and
state

D2
Config
and
state

D3
Config
and
state

Dn
Config
and
state

• Provides per-domain Register
Programming Interface based on
incoming Domain ID.

• Number of domains is
implementation-defined.

• Domain initialization may be
fixed (e.g. during system design)
or dynamic (programmable e.g.
through a root secure monitor /
root of trust)

• In early stages of development…

29

I/O Memory Management Unit (IOMMU)

• DMA Remapping service
• Present a sparse physical region as a continuous

virtual
• Allow devices that can only access 32bit

addressable memory to overcome that limitation
• Virtual memory protection like the MMU

• Page tables have the same format as the MMU
• Applications may share page tables with devices

• Other useful functionality
• Interrupt remapping
• Memory management service to peripherals
• …

• Recently ratified !

https://github.com/riscv-non-isa/riscv-iommu

30

Questions ?

31

Thank you

Contact infos:

E-Mail: mick@ics.forth.gr

https://www.ics.forth.gr/carv

https://riser-project.eu

mailto:mick@ics.forth.gr
https://www.ics.forth.gr/carv
https://riser-project.eu

