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1 Executive Summary 

This report describes describes the results of Task 3.1. Specifically, the focus is on the FPGA Emulation 

platform that is leveraged by project partners to progress while the PCIe Accelerator and Microserver 

Platforms are being implemented. This is especially important for partners involved in the software-

focused activities of WP4 and WP5. This emulation platform serves as a Software Development Vehicle 

(SDV).  The core of the document resides in Section 3 (FPGA Emulation Platform). It is composed of 

three sub-sections: 

 Section 3.2 (Hardware Setup) presents the hardware settings for the RISER FPGA platform 

 Section 3.3 (FPGA Project) gives details of the platform firmware that emulates a RISC-V System-

on-Chip 

 Section 3.4 (Software) provides insights into the platform software stack from boot to applications. 

Many of the partners involved in the development of the RISER FPGA Emulation platform are also 

partners in the EPI-SGA2 and EUPILOT projects and the RISER FPGA Emulation platforms use IP 

blocks that are developed from these partners. In order to provide a complete picture, this document 

highlights the elements that are common among projects and the novel aspects that have been developed 

in RISER T3.1.  

The FPGA development platform used by other projects is the AMD/Xilinx VCU128 board. One of the 

main contributions of RISER has been to port the full SDV emulation infrastructure and software 

toolchain to Alveo U55C. This migration requires changes to the design to match the U55C board 

specifications (fewer logic resources, no external DDR4 RAM, no Gigabit Ethernet) but will allow for 

larger-scale deployment in the FPGA cluster available at BSC. Consequently, we anticipate expanding 

our FPGA emulation platform to tens of nodes in the latter period of the project.  

In addition, the RISC-V core has been upgraded to Atrevido 323 in the RISER SDV. This core version 

is a significant improvement over the version present in previous projects: 

 Out-of-Order core vs In-order 

 Incorporates Semidynamics’s new Gazzillion technology, supporting up to 128 outstanding misses. 

 New branch predictor. 

 Addition of Cache Management Operations (CMO) support. 

 Upgraded floating-point unit, with half-precision arithmetic support. 

 Altogether, we expect that these changes to cover the needs of RISER partners with respect to emulation 

and prototyping in an effective manner. 
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2 Context  

This document provides a description of the FPGA-based emulation platform featuring the RISER 

system, designed primarily to streamline hardware and software debugging processes. The system 

comprises of various key components, including the out-of-order RISC-V core sourced from 

Semidynamics, an DRAM memory controller tailored for the FPGA's memory, as well as UART and 

Ethernet connectivity for networking capabilities. These integral hardware elements enable the booting 

of Linux, thereby enhancing the platform's versatility. Moreover, the design incorporates embedded 

logic analysers within the FPGA logic, along with other essential IP blocks, to further facilitate efficient 

hardware and software debugging tasks. This testing design has been shared with RISER partners, 

serving as the designated Software Development Vehicle (SDV) for the advancement of system software 

within WP4, and for the development and exploration of application use cases within WP5. 



 

D3.1: FPGA Emulation Platform 

 
 

 

  

RISER – GA 101092993 Page 6 of 20 

 

3 FPGA Emulation Platform 

3.1 Overview of Emulation Platform 

This section describes the infrastructure developed for the RISER project to provide a test and validation 

platform, to be used as a vehicle allowing early software development and verification on a RISC-V 

runtime system environment. The intent of this early-generation platform is to resemble as much as 

possible the final RISER system boards so that the software developed in WP4 and WP5 can reach a 

high degree of maturity as early as possible, before the production of fully-featured platforms. The 

RISC-V ecosystem in the FPGA emulation platform leverages the RTL implementation of the chip that 

will be used in the final accelerator boards. The design includes several IP’s developed within the EPI 

consortium by different partners interconnected in a manner that resembles as much as possible the final 

RISC-V chip that will be utilised on the RISER platforms. The emulation platform also includes 

additional logic supporting evaluation of performance characteristics as well as tracing capabilities for 

software debugging and optimisation. 

3.2 Hardware Setup 

3.2.1 Overview 

The FPGA Emulation Platform shown in Figure 1 is integrated by an FPGA compute-based platform 

and an x86 Server. The host server is a commodity x86 server featuring an AMD Ryzen 5 5600 Central 

Processing Unit (CPU) with 128GB of DDR4-3200 memory, both mounted on a Mini-ITX motherboard. 

It runs with a Linux OS runtime environment based on the Red Hat mainstream distribution (Rocky 

Linux 9) with local storage and a mounted Network file-system. In terms of software, the server uses 

the Xilinx Vivado 2022.1 design suite installed to manage the programming and debugging of the FPGA 

evaluation board. 

 

FIGURE 1. EMULATION PLATFORM HARDWARE SETUP DIAGRAM  
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3.2.2 FPGA Board 

The FPGA boards used for the RISER emulation are the AMD VCU128 and the U55C, both featuring 

an AMD Virtex UltraScale+ VU37P HBM2 MPSoC and VU47P HBM2 MPSoC respectively. The 

UltraScale+ MPSoC integrates 8GB of HBM DRAM adjacent to an FPGA die, enabling substantial 

memory bandwidth and a significantly reduced PCB footprint. Virtex UltraScale+ HBM FPGAs 

mitigate bandwidth bottlenecks and power consumption associated with the use of parallel memories, 

such as DDR4, in various applications including compute, database, and network acceleration. The 

VCU128 board is specifically designed for prototyping applications utilizing Virtex UltraScale+ HBM 

FPGAs. The resources incorporated in the VCU128 and U55C are detailed in Table 1. 

 

Resources AMD VCU128 

 

AMD U55C 

 

Memory capacity 8 GB HBM2, 4.5 GB DDR4 16 GB HBM2 

Memory throughput 460 GB/s 460 GB/s 

LUTs 1,304K 1,304K 

Registers 2,607K 2,607K 

DSP Slices 9,024 9,024 

High speed 

Communication 

4 QSFP28, 1-Gbit Ethernet port, PCIe 

Gen3x16 or Gen4x8 

2 QSFP28, PCIe Gen3x16 or 

Gen4x8 

TABLE 1. FPGA SPECIFICATIONS  

3.2.3 FPGA Resources availability  

The Emulation Platform is based on FPGA devices, which are both expensive and difficult to exploit. 

Fortunately, members of the RISER consortium possess both a sufficient amount of those devices and 

the skill set to perform developments on the Emulation Platform and improve it. In particular, BSC 

provides remote access to a small prototyping infrastructure consisting of five VCU128 boards. In the 

forthcoming months of the project, BSC will extend access to a larger FPGA cluster for the RISER 

partners, enabling further developments on the FPGA Emulation platform. Other partners may also 

leverage local resources to support specific tasks. The number of FPGA boards available to RISER 

partners is presented in \hTable 2. As can be seen, there is an significant number of devices for RISER 

partners to work on, although those resources are shared with other projects. 

Partner Access level 
Boards count 1 

Alveo U55C AMD/Xilinx VCU128 

BSC Remote/All partners 96 5 

Semidynamics Local only 5 5 

FORTH Local only 4 3 

TABLE 2: FPGA BOARDS AVAILABLE TO RISER PARTNERS 

3.3 FPGA Project 

3.3.1 Architecture Overview 

The FPGA project is composed of two main blocks well differentiated by their origin: the RISC-V 

Compute Ecosystem and the 3rd Party AMD/Xilinx support IPs that make up the block design. The 

                                           

1 This is the total number of boards hosted by partners at the time of writing, which is shared with other projects.    
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RISC-V Compute ecosystem leverages the RTL from EPAC 1.5 (v1.5 of the RISC-V accelerator chip, 

from the EPI-SGA2 project) which incorporates several IP blocks developed by some of the partners 

present in the RISER project: 

 Atrevido RISC-V Core, from Semidynamics. 

 Vector Processing Unit (VPU) accelerator, from BSC. 

 Network on Chip (NoC), from EXTOLL. 

 Last Level Cache, developed by FORTH. 

 Open source IPs: Debug Module, Platform-Level Interrupt Controller (PLIC) and Core-Level 

Interrupt Controller (CLINT) – originally developed for the Pulp platform2. 

The 3rd party IPs from AMD/Xilinx instantiated in the Block Diagram (BD) are a set of freely available 

designs tailored to the specific FPGA platform used, which provides the RTL design with connectivity 

peripherals such as PCIe, Ethernet, UART, and memory resources in the form of a controller, and an in-

package HBM stack. In addition, the bitstream includes the required hardware to trace the execution of 

instructions (Tracer) and provide performance information during Atrevido cores’ execution. 

 

FIGURE 2. SDV ARCHITECTURE DIAGRAM 

Figure 2 shows the connection scheme between the host server and the U55C device. The host and the 

FPGA are connected through three different interfaces: 

• UART/JTAG interface: used to program the FPGA and also to access the UART terminal,once a 

Linux image is running on the RISC-V ecosystem in the FPGA. 

• QSFP28 connector: establishes a point-to-point IP network between the host and the  FPGA board. 

It is used to access the FPGA via SSH and give access to a network filesystem (NFS) to the Atrevido 

RISC-V core once Linux has booted. 

 PCIe Interface: The host uses this interface to write the Linux image to the on-chip HBM memory. 

The configuration of the RISC-V ecosystem is performed via this interface. 

3.3.2 RISC-V Core 

The Atrevido core is presented in Figure 3, and is developed by Semidynamics. This is a 12-stage 

pipeline, 3-way-decode, 5-way-issue, 3-way-commit,  64-bit RISC-V core. Capable of targeting 

demanding HPC and AI tasks, Atrevido can also boot modern fully-featured operating systems such as 

Linux. ATV323 supports an optional native Vector Unit from Semidynamics, or can interface a 3rd 

                                           

2 https://pulp-platform.org/: PULP is a silicon-proven platform organized in clusters of  RISC-V cores. It consists 

of a  set of IPs described in SystemVerilog, together with the related simulation and synthesis scripts, as well as 

the necessary runtime software written in C and RISC-V assembly to enable using the platform.  

https://pulp-platform.org/
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party VPU over Semidynamics’s OVI 2.0 (Open Vector Interface Specification). The later is the current 

implementation used in the RISER project, where the core interfaces the VPU from BSC. More 

information on the Vector Processing Unit can be found in the Section 3.3.3. 

 

FIGURE 3. ATREVIDO 323 BLOCK DIAGRAM  

The Atrevido 323 core supports three privilege levels: machine (M), user (U), and supervisor (S). 

Furthermore, both SV39 and SV48 virtual memory are supported. Table 3 also presents the list of RISC-

V extensions supported by the core. Finally, the Atrevido 323 core supports the Semidynamics 

Gazzillion Misses TM technology, allowing to support up to 128 outstanding misses; and adheres to the 

following specifications: 

• RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, version 20200125 

• RISC-V Instruction Set Manual, Volume II: Privileged Architecture, v1.12 

• RISC-V Debug Support v0.13 

 

Extension name Description of the extension 

A Atomic instructions 

B Bit Manipulation instructions (Zba, Zbb, Zbc, Zbs) 

C Compressed instructions 

D Double-Precision Floating Point instructions 

F Single-Precision Floating Point instructions 

I Base integer instruction set 

M Integer Multiplication and Division instructions 
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V Vector instructions 

Zicsr Control and Status Register instructions 

Zifencei fence.i instruction 

CMO Cache management instructions (Zicbom, Zicbop, Zicboz) 

G=IMAFD Support for Linux OS 

TABLE 3: RISC-V EXTENSIONS SUPPORTED BY ATREVIDO 323  

3.3.3 Vector Processing Unit (VPU) 

The EVA (Enhanced Vitruvius Architecture) VPU is an advanced design of the Vitruvius vector unit 

featured in EPAC-1.0 and EPAC-1.5. Compared to the previous implementation, it adopts the latest 

RISC-V V-extension (version 1.0). It also connects with the Atrevido scalar core via an updated Open 

Vector Interface (OVI), now at version 2.0. Atrevido manages memory access for vector memory 

operations. EVA is designed for HPC acceleration, featuring long vector registers (16384 bits) and a 

flexible number of functional units (8 in the current implementation), all linked by a dual ring 

interconnect. The EVA Vector Processing Unit (VPU) has the following general characteristics: 

 Maximum vector length (VLEN): 16,384 bits, seen as 256 elements of 64 bits, 512 elements of 32 

bits, 1024 elements of 16 bits, or 2048 elements of 8 bits. 

 1 Fused Multiply-Add (FMA) unit per lane capable of 2 DP FLOP/cycle. 

 Support for 64- and 32-bit FP operations per lane capable of 4 SP FLOP/cycle. 

 Support for 64, 32, 16, 8-bit integer and fixed-point operations, signed and unsigned. 

 Support for vector register renaming with 40 physical vector registers per core. 

 Limited out of order capability in vector memory operations. 

 Overlapped execution of arithmetic, memory, and data movement operations. 

 Support for any number of vector loads as provided by the OVI-2.0 interface. 

 Support for masked operations, according to the mask layout in RVV-1.0. 

 Support for Vector Register Group Multiplier (aka LMUL) LMUL>1 and fractional LMUL. 
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FIGURE 4. EVA ARCHITECTURE BLOCK DIAGRAM  

Figure 4 illustrates the comprehensive block diagram for the EVA VPU. This RISC-V vector accelerator 

operates on a decoupled design principle, wherein the Atrevido out-of-order scalar core dispatches 

instructions to the VPU. This set-up enables the VPU to process instructions with a degree of out-of-

order execution capability. The architecture of EVA is organized around lanes, each of which is 

uniformly configured. Every lane houses a segment of the vector register file and is paired with a Fused 

Multiply Accumulate (FMA) functional unit. Additionally, each lane is equipped with its own Finite 

State Machine (FSM), granting it the autonomy to operate independently of the others. This 

independence is maintained except in scenarios where executing specific instructions—such as those 

involving permutation and data movement—requires access to vector elements from different lanes. In 

the RISER Emulation platform implementation, the VPU incorporates a total of 8 lanes. 

Finally, the VPU is supported by the LLVM C compiler (originating from the EPI-SGA2 project) which 

grants users a convenient way to generate vectorized code that leverages this high-performance 

computing IP. 

3.3.4 Last-Level Cache (LLC) 

The Last Level Cache (LLC) developed by FORTH originates from the EPAC-1.5 design and has been 

adapted for the RISER FPGA emulation platform. The LLC consists of multiple banks distributed on 

different cross-points of the NoC. Each bank of the LLC is 256 KBytes, 8-way set associative and has 

an optimized seven-stage pipeline. In this RISER system, this is the second level cache which is also 

the last level of cache memory, hence the name Last Level Cache (LLC). The pipeline of the Last 

Level Cache is shown in Figure 5 and has the following characteristics: 

 AMBA5 CHI and AXI Protocol 

 Multiple distributed banks (up-to 4 banks).  

 256KB 8-way set-associative per bank with Pseudo-LRU replacement  

 Fully pipelined and non-blocking design: 1 line (64-bytes) per cycle per bank.  

 Supports cache allocation hints by core and vector unit (non-temporal loads and stores).  

 Programmable address interleaving: 64-bytes / 2KBytes / 4KBytes (OS page).  

 Point-of-Serialisation (PoS) and support for atomic operations 

 Cache Management Operations (CMOs)  

 64 outstanding misses per bank. 

 64 outstanding write-backs or non-temporal stores per bank.  
 

 

FIGURE 5. THE LAST LEVEL CACHE PIPELINE 
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3.3.5 Network on Chip (NoC) 

The NoC used in the Emulation Platform has been re-used from the EPAC-1.5 test chip and adapted for 

the particular requirements of the SDV. Two different kind of NoCs are utilized: (1) a CHI based cache 

coherent high-performance NoC enables accessing data from main memory and data exchange between 

the accelerator cores and the LLC, and (2) a NoC based on AXI lite, for configuration and debugging 

purposes. The topologies for both NoCs are shown in Figure 6. 

 

FIGURE 6. RISC-V ECOSYSTEM NOC  

CHI NoC 

The CHI high-performance NoC developed by EXTOLL is the main on-chip interconnection network. 

It transfers data from main memory into the last level caches, from the last level caches into the cores 

and between the cores. The cache-coherent network supports 4 different channels: request, response, 

data and snoop. These channels are realized as distinguished channels to provide the needed bandwidth 

and throughput. Each endpoint like cores or LLCs can insert one request on each channel in each clock 

cycle. A complete cache line of 512 bits can be injected into the network every clock cycle. For example, 

running at a frequency of 1GHz, the NoC provides an injecting bandwidth of 64 GB/s per port on the 

data channel. 

The basic building block of the NoC is the Cross Point (XP). Each XP includes four links to connect the 

XPs with each other and two ports to provide access for devices like the different cores or the LLCs to 

the network. The XPs themselves can be connected in any topology that can be built with four links. For 

EPAC-1.5, a 2D mesh configuration was chosen, which is a known scalable topology. It also fits for the 

physical implementation of the test chip, as the micro tiles can be laid out in a grid. The EPAC-1.5 test 

chip consists of 6 micro tiles. Therefore, the mesh uses a 3x2 configuration, which is also reflected in 

the physical implementation. The topology is shown in Figure 6. RISC-V Ecosystem NoC . Dimension 

order is used as routing algorithm for this network. It provides a deadlock-free routing in a 2D mesh. It 

also retains the order of injected packets on each channel, which is mandatory requirement by the CHI 

specification. All channels besides the snoop channel support only unicast routing. For the snoop 

channel multicast routing is supported. The same snoop request can be sent to more than one destination 

node. If the injecting device sends this request multiple times for each destination, then the network 

utilization gets increased. Therefore, the NoC implements multicast support for the snoop channel. Each 

XP has a special snoop routing table to replicate requests in a XP when they need to be sent to different 

egress links of the XP to reach their destinations. A credit-based flow control is used between the XPs. 
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AXIlite configuration NoC 

A separate NoC is used for low bandwidth access to initialize and configure the components of the test 

chip. That second NoC adheres to the AMBA AXI4-Lite standard and is based on open-source HW IP 

modules from the Pulp platform. Each tile contains a crossbar switch with three master and three slave 

ports. Two master and two slave ports connect to other tiles; one master and one slave port connect into 

the tile. The bottom three tiles and the top three tiles are connected with each other, and the bottom half 

and the top half are connected between the IO and the upper cross-point tile. External accesses to 

components on the config NoC are possible through the RISC-V debug module in the IO tile, which is 

also attached to the config NoC. 

3.3.6 Other IPs 

Core-Local Interrupt Controller (CLINT) 

This IP is responsible for handling interrupts at the core level. In particular, it deals with timer and 

software interrupts, and maintains the memory-mapped control and status registers which are associated 

with those functions. The RISER FPGA emulation platform uses the IP from the open-source PULP 

platform. 

Platform-Level Interrupt Controller (PLIC) 

This IP is responsible for  handling hardware interrupt sources that are shared amongst the hardware 

threads (harts) of the RISC-V processor. Typically, it exposes an interface for I/O devices to raise 

interrupt signals and for harts to divert from the normal program flow to execute interruption handling 

code. The RISER FPGA emulation platform uses this IP from the open-source PULP platform. 

Debug Module 

In order to bring up a System-on-Chip and develop applications effectively, it is essential that processors 

provide means to the user to pause the execution of programs and probe the internal state of the system 

and the application memory. Together with an adequate software  stack, the Debug Module allows 

developer to perform those actions. The RISER FPGA emulation platform uses this IP from the open-

source PULP platform. 

CHI to AXI Interface 

An IP block is needed to interface and bridge the CHI NOC presented in Section 3.3.5 and AXI 

peripherals such as the Ethernet and the PCIe controllers. This IP has been developed by FORTH.  

PCIe end-point controller 

Both the AMD/Xilinx VCU128 and the Alveo U55C can be plugged into a PCIe port of a host PC. This 

is very useful to implement high-speed communications between applications running on the host 

machine and the RISC-V SoC. In particular, we use it to load the OS image and other binaries, as 

described in the Section 3.4 (Software). On the side of the FPGA, we use a PCIe controller IP provided 

by AMD/Xilinx configured as XDMA with 8 lanes of PCIe Gen.2. This setup is meant to perform system 

initialization and not high-performance transfers. 

Ethernet controller 

Ethernet connectivity is implemented by means of an Ethernet controller IP in the FPGA. Due to 

specifics of the FPGA boards, we use several solutions. For AMD/Xilinx VCU128 boards, a 1 Gigabit 

Ethernet controller IP from AMD/Xilinx is used. For Alveo U55C, a 10 Gigabit Ethernet controller IP 

is used instead. 

External memory latency and throughput control 
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To assess the impact of increased memory latency, a Latency Controller IP block developed by FORTH 

is integrated on the memory just before the DRAM memory controller(s), being HBM or DDR4. It 

exposes configuration registers through an AXI4-lite interface, allowing users to configure the desired 

additional latency. In addition, a Bandwidth Limiter IP block developed by FORTH is used to throttle 

bandwidth and throughput, enabling the study of system behaviour and performance under different 

memory system bandwidth thresholds. 

GPIO 

The FPGA Emulation platform contains a GPIO IP with several outputs connected to the Atrevido reset, 

kick core and tracer signals. This device is mapped to the platform memory, and the outputs can be 

controlled by plain writes to the GPIO slave over XDMA. 

3.3.7 Emulation Platform changes related to EPAC-1.5 TC 

Focusing on creating an FPGA Emulation Platform that can be used for system software development, 

as well as vector code development and overall system benchmarking, we have identified the relevant 

modules. The EPAC-1.5 RTL design, has been patched and modified accordingly for FPGA porting and 

optimization. Some key changes are listed below: 

 Porting of Atrevido, LLCs and VPU’s data structures from SRAMs to AMD/Xilinx-specific 

primitives such as URAMs and BRAMs to save FPGA resources. 

 Upgraded Atrevido core. 

 Upgraded VPU. 

 Adapted the L2Cache to function as LLC. 

 Porting of some of VPU’s arithmetic operations to DSPs hardware block. 

 Bridging of the EPAC-1.5 code with the 8GB HBM memory of the FPGA, using custom glue 

logic. 

 Addition of tracing mechanism developed by Semidynamics that enables co-emulation using 

Hardware-In-the-Loop (HIL) techniques 

 Addition of auxiliary signals that can be monitored via Integrated Logic Analyzers (ILA) to 

enable the system’s monitoring/benchmarking under real workloads. 

 The FPGA designs and projects have been upgraded to the newer AMD/Xilinx Vivado 2022.1. 

 The Linux kernel and OpenSBI of the RISER SDV have been upgraded to Linux kernel 6.x 

series in order to closely track the mainline Linux kernel to have the most up-to-date RISC-V 

support that improves system stability – the current RISER SDV Linux kernel version is 6.6 

LTS. Moreover, the RISER SDV now supports two full-scale Linux distributions such as 

Ubuntu 22.04 LTS and Fedora that help the users have access to the latest packages via their 

package manager and easily install the dependent libraries for their applications.The RISER 

SDV also supports a minimal testing-oriented Linux environment, based on BusyBox. 

3.4 Software 

3.4.1 Platform initialization sequence 

The sequence of steps required to initialize the Emulation Platform (cf. Figure 7)  are as follows: 

1. Programming the FPGA with the platform bitstream over USB. 

2. Load the XDMA driver to enable PCIe communication with the FPGA. 

3. Release system reset over PCIe. 

4. Load executable binaries to the FPGA’s DDR4 or HBM memory over PCIe. 

5. Configure the control registers of the RISC-V ecosystem design over PCIe. 

6. Enable the kick config bit to start the core fetch from memory. 
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7. Mount NFS folder with applications. 

 

 

FIGURE 7. SYSTEM INTERCONNECTION DIAGRAM  

3.4.2 Linux Boot 

Once the platform is out of reset, the boot of the Operating System begins. As is typical for the Linux 

OS, the RISER FPGA emulation platform uses the following artefacts: 

 A BootROM binary performs minimal low-level initialization of the machine. 

 OpenSBI first configures the hardware as a First Stage Boot Loader, and then prepares Linux 

binaries for execution. 

 A device tree binary blob provides platform-specific information to the OS. 

 The Linux kernel then takes over and performs the initial configuration of the OS  

 A root file system is then loaded by the kernel. It contains additional OS features (i.e. kernel 

modules and system services) as well as user applications. 

Creating those artefacts for the FPGA Emulation platform from scratch consists of multiple complex 

steps, in particular since the multiple toolchains required to build them are usually not present in the 

user’s machine. It is also inconvenient that those artefacts may only be validated on the FPGA emulation 

platform, and not directly on the user’s PC.  

To that end, yet another RISC-V Tool (YARVT)3 has been developed. This tool will be described in 

detail in the RISER Deliverable 2.3, to be delivered at M17. In a nutshell, this tool automates most of 

the artefacts generation. First, compilation toolchains for RISC-V for both bare-metal and Linux are 

fetched and built. Second, the artefacts described above are built (except the BootROM and device tree). 

Third, those artefacts are aggregated into a single binary image, which simplifies the handling of the 

system. Finally, users may also use YARVT to build a QEMU binary that mimics the FPGA Emulation 

platform. Equipped with those binaries, users may boot the platform using the procedure described in 

                                           

3 Open-source build tool, available at https://github.com/mickflemm/yarvt  

https://github.com/mickflemm/yarvt
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Section 3.4.1 (Platform initialization sequence); or emulate this boot directly on their machines, using 

the corresponding QEMU image.  

The device tree and the BootROM are generated independently by firmware designers and system 

software developers for different reasons. The BootROM does not evolve much and is different 

depending on the use case (e.g. QEMU or FPGA). The device tree is modified very often and it would 

therefore be inconvenient to regenerate the whole boot image each time.  

3.4.3 Running Applications 

Job scheduling 

There are currently a limited amount of SDV nodes, each one composed of one x86 server (host) and 

one FPGA development board. Figure 8 represents the network infrastructure presented to the user: first 

a login to a “login node” is required and then, through SLURM commands (operating on the blue area 

of the network), the users can allocate FPGA resources. 

 

 

FIGURE 8. JOB SCHEDULING INFRASTRUCTURE DIAGRAM  

Due to the limited hardware resources, access to SDV nodes is given through the SLURM job scheduler. 

Both interactive sessions, via the salloc command, and jobscripts, via the sbatch command, are 

supported. Additionally, users may optionally select a version of the RTL by passing an extra SLURM 

parameter known as constraint. A custom script called prologue runs at the beginning and end of a 

SLURM job. 

$ salloc -p fpga-sdv -N1 -t1-00:00:00 

salloc: Granted job allocation <job_id> 

salloc: Waiting for resource configuration 

// Wait for ~3min 

salloc: Nodes pickle-1 are ready for job 

$ ssh fpga-sdv-1 

fpga-sdv-1$ 

$ cat jobscript.sh 

#SBATCH --partition=fpga-sdv 
#SBATCH --nodes=1 
#SBATCH --time=1:00:00 
 

 
ssh fpga-sdv-1 "<myscript>" 
$ sbatch jobscript.sh 
 

 

 

The prologue script starts by parsing the constraint given by the user to select the corresponding 

bitstream. This bitstream is then programmed into the FPGA using the Vivado toolchain. Afterwards, 

the script offloads a Linux kernel image to the FPGA through the PCIe bus and triggers the Linux boot 

as explained in the previous sections. Lastly, the prologue script performs some functional checks before 

handing the node to the user: if the Linux image running inside the FPGA has reached the login prompt, 

if it responds to ping and SSH connections, etc. 
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For security and IP protection reasons, the prologue script also removes access to the PCIe and USB 

buses. In this manner, malicious users may not reprogram the FPGA with a different bitstream nor 

offload a non-curated Linux image. 

The whole prologue script takes up to three minutes to execute. To minimize waiting time, if the 

constraint requested by the user is the same as the one from the previous job, and the Linux inside the 

FPGA is still alive (i.e., responds to ping), there is no need to reprogram the FPGA and boot the OS. 

The Linux image that is booted inside the FPGA is a standard Ubuntu 22.04 LTS distribution, which 

mounts its root filesystem and /home from an NFS server (Fedora support has also been developed by 

Semidynamics). This allows users to have access to the SDV node using the same credentials as in the 

login node and have an implicit file sharing mechanism. Furthermore, system software such as compilers 

and mathematics libraries are also mounted from the NFS server, and are shared with other commercial 

RISC-V platforms of the datacenter. In this manner, users have a binary-compatible environment in 

whichever RISC-V partition they are running on. 

3.4.4 Tools and Metrics  

In addition to execution of RISC-V binaries, the FPGA Emulation platform offers several capabilities 

that are important for software partners to assess the merits of the considered hardware/software 

combination. 

Memory latency & throughput modifications 

Interactions between executed software and external memory are critical for high performance 

applications. In the RISER FPGA emulation platform, users have the possibility to manipulate both the 

maximum throughput and the minimum latency to the external memory. In effect, IPs presented in 

Section 3.3.6 (Other IPs)  practically introduce a fixed latency to each request and throttle them, if users 

configure them so. In practice, users may set those parameters from the PC that hosts the FPGA, before 

booting the SDV. Additional latency can be set at the clock cycle granularity. Memory bandwidth 

throttling is determined as the fraction of cycles during a given time window, in which memory accesses 

are completed. The resulting bandwidth can be calculated by multiplying this fraction with the data 

width and the FPGA frequency. 

Tracing capabilities 

The SDV also provides a co-emulation functionality, incorporating a SemiDynamics implemented 

tracing mechanism, capable of capturing vital information about the code executed by the Atrevido core 

in the FPGA. This tracing mechanism is integrated into the RTL code through a patch, and during code 

execution, it transfers the captured trace to the FPGA’s HBM. To facilitate this process, a host 

application is deployed, responsible for copying the captured trace from the FPGA to the host memory 

and regulating the FPGA data flow to ensure lossless copies of the trace. 

Concurrently, Spike, a RISC-V Instruction Set Simulator (ISS), runs on the host machine, and 

equivalence checking is performed between the traces generated by Spike and Atrevido. Upon detecting 

a mismatch, an extended report detailing the discrepancy, along with information about the executed 

code leading up to the deviation, is generated. The tracing infrastructure is depicted in Figure 9. 

Leveraging this infrastructure, hardware developers can formulate comprehensive lists of RTL signals 

and triggers, aiding in the comprehension and resolution of RTL issues. 
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FIGURE 9. TRACER OUTPUT CAPTURE  
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4 Concluding Remarks 

The work described in this document has led to the development of an FPGA-based emulation 

infrastructure for RISER system platforms (Accelerator and Microserver). This infrastructure enables 

activities in the software-focused packages (WP4 and WP5) to proceed with development and testing of 

software stacks and use cases well before the RISER system boards become available. The Emulation 

Platform (SDV – Software Development Vehicle) builds upon the foundation created earlier by the 

ongoing EPI-SGA2 and EUPILOT projects. This collaborative effort across projects is crucial as it 

expands the prototyping infrastructure beyond what a single project could achieve alone. Additionally, 

it allows for sharing and reuse of expensive FPGA boards across projects. 

Within WP3, significant improvements have been made to the FPGA emulation infrastructure by 

upgrading some of its key components, such as the RISC-V Core and the VPU, to their latest available 

versions, thereby enhancing the platform's performance. Furthermore, enhancements have been made 

to the supported FPGA boards: the current SDV is now compatible with the Xilinx U55C platform, in 

addition to the already supported VCU128. Additionally, the OS support has been expanded to include 

two fully-featured Linux distributions, Fedora and Ubuntu, for deployment in Cloud/HPC environments. 

Future work for this SDV, beyond ongoing limited-scope effort focused on maintenance and usability 

enhancements, includes expansion to a larger cluster of U55C boards hosted at BSC, which will enable 

providing more resources to the activities focused on system software and use cases. This expansion of 

the emulation infrastructure is expected to further stress-test the robustness of RISER system designs. 

This deliverable precedes D2.3 (due by M17, i.e. end of May 2024), which will present the suite of tests 

and tools used in RISER for platform verification and evaluation. Taken together, D3.1 and D2.3 provide 

the basis for upcoming deliverable D3.2 (due by M22, i.e. end of October 2024), which is the planned 

initial release of the RISER Acceleration and Microserver Platforms. The FPGA-based emulation 

platform described in the present document is an essential pre-requisite for evolving the designs for the 

upcoming RISER platforms. With the delivery of D2.3, the RISER project will have reached Milestone 

MS2 (“FPGA emulation completed and verified against specifications”).  
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5 Appendix: Acronyms and Abbreviations 

Term Definition 

AMBA Advanced Microcontroller Bus Architecture 

AMBA-CHI AMBA-Coherent Hub Interface 

AXI Advanced eXtensible Interface 

BRAM Block RAM 

C2C Chip-to-Chip 

CLINT Core-Local Interrupt Controller  

CMO Cache Management Operations 

CPU Central Processing Unit 

DDR Double Data-Rate 

DRAM Dynamic Random Access Memory 

EPAC EPI Accelerator (collection of IP blocks, incl. Core, Cache, NoC, VPU) 

EPI European Processor Initiative 

FLOP Floating Point Operations per Second 

FMA Fused Multiply Accumulate (FMA) 

FPGA Field Programmable Gate Array 

HBM High Bandwidth Memory 

HIL Hardware-In-the-Loop 

HPC High Performance Computing 

ILA Integrated Logic Analysers 

IP Intellectual Property block (hardware and/or software artifact)  

ISA Instructions Set Architecture 

JTAG Joint Test Action Group 

LLC Last-Level Cache 

LMUL Vector Register Group Multiplier 

LPDDR Low Power Double Data Rate 

LRU Least Recently Used  

MPSoC Multi-Processor System-on-Chip 

NFS Network File System 

NoC Network on Chip 

NVMe Non-Volatile Memory express 

OpenSBI Open Supervisor Binary Interface 

OS Operating System 

OVI Open Vector Interface 

PCIe Peripheral Component Interconnect express 

PLIC Platform-Level Interrupt Controller 

RTL Register Transfer Level 

SDV Software Development Vehicle 

SRAM Static Random Access Memory 

SSH Secure Shell Protocol 

SPI Serial Peripheral Interface 

UART Universal Asynchronous Receiver Transmitter 

VPU Vector Processing Unit 

XP Cross-Point 

 


