
NOMMU Linux on RISC-V for platform bring-up and evaluation

Call: Open source for cloud-based 

services, GA Nr: 101092993 (HaDEA)

Nick Kossyfidis, Manolis Marazakis (FORTH)



2

• Design of individual CPU functional units 
• ALU, FPU, VPU, MMU, …

• Verification of individual functional units
• e.g. directed/random tests, in a simulator

• Verification of the whole core
• e.g. RISC-V ACT suite, checks against the SAIL 

model/reference simulator

• Post-synthesis co-simulation tests
• Integration with other IPs

• Each IP with its own set of pre/post-synthesis tests

SoC: Design, Integration, Verification



3

RISC-V SoC bring-up 

• More advanced bare-metal tests for verification of the core
• e.g. parts of the RISC-V spec not covered by ACT, custom 

extensions

• Progressively more complex bare-metal platform-level tests
• e.g. interrupt delivery/delegation, communication between 

peripherals, peripheral operation

• Memory subsystem tests
• e.g. litmus, cache-coherency with peripherals, IOMMU

• Security-related tests
• e.g. constant-time requirements, TRNG operation, MTT, xPMP

• Stress testing/profiling/benchmarking



4

The way to full Linux boot



5

Step-by-step expansion of coverage

• Booting a full-blown Linux distro. greatly expands test 
coverage … and complexity

• Tracking down HW bugs in such a setup is a nightmare!
• We need a strategy to progressively expand test coverage



6

Simplifying the Linux boot process

• Use OpenSBI, a firmware implementation that also acts 
as FSBL
• Get rid of SSBL and jump to Linux kernel directly

• Reduce number of external images
• Kernel image as an OpenSBI payload
• Root FS included as initramfs in the kernel image



7

Simplifying the Linux boot process



8

Simplifying the Linux kernel 

• Start with a bare minimum kernel configuration
• No networking, no storage, NOMMU
• Limited functionality, single user

• Move on to more complex kernel configurations
• With networking, storage, multiple users, …

• Finally, a full-blown kernel configuration
• With systemd support and everything needed to boot a fully-

featured Linux distro.



9

Simplifying userspace

• Start with a single process (busybox), statically linked
• Add more tools and networking support

• e.g. iperf, ssh

• Use an off-the-shelf rootFS of a full-blown Linux distro.
• e.g. Ubuntu



10

Why NOMMU Linux

• MMU is a common source of HW bugs in our experience
• Microarchitectural bugs that are hard to reproduce in simple 

tests we previously did
• Especially when we go multicore

• Why not go for a simple RTOS ? (e.g. FreeRTOS, Zephyr)
• Using standard tools (e.g. busybox, iperf) would be harder 

(different syscall API)
• Building the image would be more complicated (need to go 

through an SDK)
• Usually support only M-mode/U-mode setups
• Would be harder to compare behavior between MMU/NOMMU



11

NOMMU Linux basics

• Different memory allocators: mm/nommu.c
• Limitations on mmap: Documentation/nommu-mmap.txt

• No memory protection
• No fork() support

• fork() relies on COW, but vfork() is supported

• No overcommit / lazy binding
• No swap
• No dynamic heap/stack

• avoid using alloca(), brk(), sbrk(), use malloc()/free() instead

• No MAP_SHARED on files
• in general MAP_SHARED functionality is limited

• No MAP_FIXED
• Limitations on MAP_PRIVATE

• no COW/paging

• Excessive fragmentation, avoid large mappings

Part of mainline Linux kernel



12

NOMMU Linux basics

• When MMU is available, the BINFMT_ELF loader is used to 
load executables / shared libraries.

• Without MMU, alternative loaders/binary formats are used
• BINMFT_FLAT

• Stripped down ELF (through elf2flt)
• No dynamic loading (libld)
• No shared libraries
• Limitations on executable’s size

• BINFMT_ELF_FDPIC
• Position Independent (PIC/PIE) ELF, no ET_EXEC support
• Support for shared libraries through function descriptors (FD)
• Support for dynamic loading (libld)
• May also be used when MMU is enabled

• Alternative toolchains also required
• based on μClibc or musl



13

NOMMU Linux basics

Currently, RISC-V does not support static PIE.



14

NOMMU Linux on RISC-V (kernel)

• Initial support added on Linux 5.5
• Only M-mode/U-mode scenario
• Mainly to support the Kendryte K210 that had a non-compliant MMU

• Almost declared deprecated on Feb. 2024
• But after community feedback, it remains supported

• New patches came up, and support keeps getting better

• Support for running NOMMU Linux on S-mode has been added
• Still needs further work though



15

NOMMU Linux on RISC-V (userspace)

• FLAT binaries supported, but won’t work for us
• Due to custom memory layout in our prototypes

• ELF psABI for FDPIC support is still WiP
• But we can at least run busybox (64-bit)

• μClibc added support for RISC-V
• Still no upstream toolchain, or support on crosstool-ng
• We are working on it: 

• https://github.com/riscv-collab/riscv-gnu-toolchain/pull/1475
• https://github.com/CARV-ICS-FORTH/riscv-gnu-toolchain/tree/uclibc

• To replicate our setup with yarvt (Yet Another RISC-V Tool):
• https://github.com/CARV-ICS-FORTH/yarvt/tree/riser

https://github.com/riscv-collab/riscv-gnu-toolchain/pull/1475
https://github.com/CARV-ICS-FORTH/riscv-gnu-toolchain/tree/uclibc
https://github.com/CARV-ICS-FORTH/yarvt/tree/riser


16

Testing MMU vs NOMMU



Thank you for your attention. Questions and comments ?

https://riser-project.eu


