
[15:00 – 17:30 CET]

Organized by the RISER project [https://riser-project.eu]
Hosted by HiPEAC [https://www.hipeac.net]

Note: The workshop will be recorded.

https://riser-project.eu/
https://www.hipeac.net/

Building RISC-V systems from the ground-up:
It all starts with bare-metal

Nick Kossifidis – FORTH

December 9, 2025

Grant agreement: 101092993
Start date: 1/1/2023 (duration: 3 years)

3

• Horror stories from prototype bring up at FORTH
• During integration / design phase (FPGA)

• Unimplemented extensions (e.g. no FPU) on RISC-V cores

• Buggy RISC-V implementations

• Compressed instructions + alignment

• Atomics + alignment

• Misbehaving MMUs

• Misbehaving / non-compliant VPU

• Misbehaving branch predictor (on Ariane, submitted a bug fix)

• Misbehaving / non-compliant wfi

• … sky is the limit

• Various integration issues / misbehaving IPs

• Mixed up interrupt lines

• … sky is the limit

• Moving on to ASIC
• A part of the toolchain “optimized out” a part of our NoC

• Timing issues, esp. related to high speed links

• At the PCB level
• Misplacement of connectors

• Reversed / mixed-up traces

How it all started…

RISER Workshop - 09/12/2025

4

• All these issues survived the hw validation / verification process

• The longer they survive the development process, the higher the cost of fixing them (even worse than
sw use cases, especially after tape out)

• We need more and better tests !

• More flexible code that could work asap, even without core extensions or IPs being present

• Progressively more complex to increase test coverage

• As efficient / small / focused as possible so that they can also be used under simulation during
hw validation (e.g. verilator)

• Able to run in an already broken setup (e.g. salvage what we can post-silicon, to provide as much
feedback as possible to the hw team)

• Able to run in a constrained environment

How it all started…

RISER Workshop - 09/12/2025

5

How it all started…

• It made sense to create a common sw infrastructure for those
tests

• As it evolved we ended up using it for other things too…
• Benchmarks
• Bootloaders (BootROM)
• Education !

6

Evolution and current status

• Developed as a side project since 2019
• On an as-needed basis
• Open Source using Apache 2.0 (not yet released)

• Platform layer
• Supports typical RISC-V SoCs

• Harts + 16650 UART + (A)CLINT + PLIC

• Supports multiple harts
• Sparse hart ids with / without boot lottery

• Supports complex memory layouts
• A hack to support rom/ram being far away without -mcmodel=large

• Single header for hardware-specific configuration
• From peripheral addresses and hart infos to linker script generation

• Support for QEMU virt machine for reference

• Yalibc
• An attempt for a freestanding libc
• For now very minimal
• Another side-project

7

Work in progress

• Platform layer
• AIA support

• ACLINT + APLIC first
• IMSIC + APLIC later on

• (e)PMP support

• Yalibc
• Switch from pre-processor macros to linker aliases (experimenting

for now)
• Create a comprehensive test suite targeting C11+ compliance
• Keep adding functionality without hurting code quality or binary

size
• Cleaning things up so that I can release this at some point

• Having fun with compiler optimizations fighting each other

8

Future work

• Infrastructure for running on S-mode with virtual memory
• With IOMMU support

• Comprehensive test suite for the platform layer (based
on the various tests I have lying around + riscv test suite)

• Hart probing / profiling suite
• Support for more RISC-V extensions and non-ISA specs

(e.g. IOPMP/IOMPT)

9

An example use case: NetBOOT

• A zero-stage boot loader (aka BootROM) that can fetch boot
images from the network

• Used for prototype bring up when no storage is available
• Can also be used in production, also on a board controller or

a security controller
• Includes:

• Ethernet driver (supported: virtio-net, emaclite, carv-ethdma)
• Tiny network stack
• DHCP client (a decent one)
• TFTP client (includes blocksize and windowsize options)

• All in ~19K (-Os, no debug symbols, no ANSI colors) but I
believe I can optimize it further

10

Boot flow for Linux (full)

11

Boot flow for Linux (simplified)

12

Future work on NetBOOT

• Unified image format
• Including both composite image + device tree

• Secure boot
• Signature verification of unified image

• Using an external TPM / RTM (e.g. Caliptra)
• Using a software RTM as fallback

• Add support for SPI flash storage (JEDEC compliant)
• Add support for eMMC/SD storage
• Target binary size: 32K max

• For the external RTM case

Thank you for your attention.

